منابع مشابه
Multidimensional advection and fractional dispersion.
Extension of the fractional diffusion equation to two or three dimensions is not as simple as extension of the second-order equation. This is revealed by the solutions of the equations: unlike the Gaussian, the most general stable vector cannot be generated with an atomistic measure on the coordinate axes. A random combination of maximally skewed stable variables on the unit sphere generates a ...
متن کاملA numerical scheme for space-time fractional advection-dispersion equation
In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...
متن کاملAdvection and dispersion in time and space
Previous work showed how moving particles that rest along their trajectory lead to timenonlocal advection–dispersion equations. If the waiting times have infinite mean, the model equation contains a fractional time derivative of order between 0 and 1. In this article, we develop a new advection–dispersion equation with an additional fractional time derivative of order between 1 and 2. Solutions...
متن کاملFractional vector calculus for fractional advection–dispersion
We develop the basic tools of fractional vector calculus including a fractional derivative version of the gradient, divergence, and curl, and a fractional divergence theorem and Stokes theorem. These basic tools are then applied to provide a physical explanation for the fractional advection–dispersion equation for flow in heterogeneous porous media. r 2005 Elsevier B.V. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Groundwater
سال: 2015
ISSN: 0017-467X,1745-6584
DOI: 10.1111/gwat.12338